A New Look at Localic Interpolation Theorems
نویسندگان
چکیده
Abstract: This paper presents a new treatment of the localic Katětov-Tong interpolation theorem, based on an analysis of special properties of normal frames, which shows that it does not hold in full generality. Besides giving us the conditions under which the localic Katětov-Tong interpolation theorem holds, this approach leads to a especially transparent and succint proof of it. It is also shown that this pointfree extension of Katětov-Tong Theorem still covers the localic versions of Urysohn’s Lemma and Tietze’s Extension Theorem.
منابع مشابه
Applications of Sup-lattice Enriched Category Theory to Sheaf Theory
Grothendieck toposes are studied via the process of taking the associated Sl-enriched category of relations. It is shown that this process is adjoint to that of taking the topos of sheaves of an abstract category of relations. As a result, pullback and comma toposes are calculated in a new way. The calculations are used to give a new characterization of localic morphisms and to derive interpola...
متن کاملInterpolation of fuzzy data by using flat end fuzzy splines
In this paper, a new set of spline functions called ``Flat End Fuzzy Spline" is defined to interpolate given fuzzy data. Some important theorems on these splines together with their existence and uniqueness properties are discussed. Then numerical examples are presented to illustrate the differences between of using our spline and other interpolations that have been studied before.
متن کاملOn the completeness of localic groups
The main purpose of this paper is to show that any localic group is complete in its two-sided uniformity, settling a problem open since work began in this area a decade ago. In addition, a number of other results are established, providing in particular a new functor from topological to localic groups and an alternative characterization of LT -groups.
متن کاملDerived Algebraic Geometry VIII: Quasi-Coherent Sheaves and Tannaka Duality Theorems
1 Generalities on Spectral Deligne-Mumford Stacks 4 1.1 Points of Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Étale Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Localic Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Quasi-Compactness of Sp...
متن کاملPerturbation and Interpolation Theorems for the H∞-Calculus with Applications to Differential Operators
Abstract. We prove comparison theorems for the H∞-calculus that allow to transfer the property of having a bounded H∞-calculus from one sectorial operator to another. The basic technical ingredient are suitable square function estimates. These comparison results provide a new approach to perturbation theorems for the H∞-calculus in a variety of situations suitable for applications. Our square f...
متن کامل